Shopify to QuickSight

This page provides you with instructions on how to extract data from Shopify and analyze it in Amazon QuickSight. (If the mechanics of extracting data from Shopify seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Shopify?

Shopify is an ecommerce platform for online and retail point-of-sale systems. It lets businesses set up and manage online stores, accept credit card payments, and track and respond to orders.

What is QuickSight?

Amazon QuickSight is the AWS business intelligence tool for creating dashboards and visualizations. Users are charged per session only for the time when they access dashboards or reports. QuickSight supports a variety of data sources, such as individual databases (Amazon Aurora, MariaDB, and Microsoft SQL Server), data warehouses (Amazon Redshift and Snowflake), and SaaS sources (Adobe Analytics, GitHub, and Salesforce), along with several common standard file formats.

Getting data out of Shopify

The first step to getting Shopify data into your data warehouse is pulling that data off of Shopify's servers using either the Shopify REST API or webhooks. We'll focus on the API here because it allows you to retrieve all of your historical data rather than just new real-time data.

Shopify's API offers numerous endpoints that can provide information on transactions, customers, refunds, and more. Using methods outlined in the API documentation, you can retrieve the data you need. For example, to get a list of all transactions for a given ID, you could call GET /admin/orders/#[id]/transactions.json.

Sample Shopify data

The Shopify API returns JSON-formatted data. Here's an example of the kind of response you might see when querying the transactions endpoint.

{
  "transactions": [
    {
      "id": 179259969,
      "order_id": 450789469,
      "kind": "refund",
      "gateway": "bogus",
      "message": null,
      "created_at": "2017-08-05T12:59:12-04:00",
      "test": false,
      "authorization": "authorization-key",
      "status": "success",
      "amount": "209.00",
      "currency": "USD",
      "location_id": null,
      "user_id": null,
      "parent_id": null,
      "device_id": null,
      "receipt": {},
      "error_code": null,
      "source_name": "web"
    },
    {
      "id": 389404469,
      "order_id": 450789469,
      "kind": "authorization",
      "gateway": "bogus",
      "message": null,
      "created_at": "2017-08-01T11:57:11-04:00",
      "test": false,
      "authorization": "authorization-key",
      "status": "success",
      "amount": "409.94",
      "currency": "USD",
      "location_id": null,
      "user_id": null,
      "parent_id": null,
      "device_id": null,
      "receipt": {
        "testcase": true,
        "authorization": "123456"
      },
      "error_code": null,
      "source_name": "web",
      "payment_details": {
        "credit_card_bin": null,
        "avs_result_code": null,
        "cvv_result_code": null,
        "credit_card_number": "•••• •••• •••• 4242",
        "credit_card_company": "Visa"
      }
    },
    {
      "id": 801038806,
      "order_id": 450789469,
      "kind": "capture",
      "gateway": "bogus",
      "message": null,
      "created_at": "2017-08-05T10:22:51-04:00",
      "test": false,
      "authorization": "authorization-key",
      "status": "success",
      "amount": "250.94",
      "currency": "USD",
      "location_id": null,
      "user_id": null,
      "parent_id": null,
      "device_id": null,
      "receipt": {},
      "error_code": null,
      "source_name": "web"
    }
  ]
}

Loading data into QuickSight

You must replicate data from your SaaS applications to a data warehouse (such as Redshift) before you can report on it using QuickSight. Once you specify a data source you want to connect to, you must specify a host name and port, database name, and username and password to get access to the data. You then choose the schema you want to work with, and a table within that schema. You can add additional tables by specifying them as new datasets from the main QuickSight page.

Using data in QuickSight

QuickSights provides both a visual report builder and the ability to use SQL to select, join, and sort data. QuickSight lets you combine visualizations into dashboards that you can share with others, and automatically generate and send reports via email.

Keeping Shopify data up to date

So, now what? You've built a script that pulls data from Shopify and loads it into your data warehouse, but what happens tomorrow when you have new transactions?

The key is to build your script in such a way that it can identify incremental updates to your data. Thankfully, Shopify's API results include fields like created_at that allow you to identify records that are new since your last update (or since the newest record you've copied). Once you've take new data into account, you can set your script up as a cron job or continuous loop to keep pulling down new data as it appears.

From Shopify to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Shopify data in Amazon QuickSight is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Shopify to Redshift, Shopify to BigQuery, Shopify to Azure Synapse Analytics, Shopify to PostgreSQL, Shopify to Panoply, and Shopify to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to move data automatically, making it easy to integrate Shopify with Amazon QuickSight. With just a few clicks, Stitch starts extracting your Shopify data, structuring it in a way that's optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Amazon QuickSight.